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Abstract--Snow on the ground is viewed in this formulation, as a saturated two-phase granular material 
comprised of small grains of ice with interstitial pores filled by a single vapor. The snow is considered 
as a continuous mixture in which the ice and vapor constituents are themselves treated as individual but 
interacting continua. 

Mathematical modeling of the snow is accomplished using a relatively recent continuum theory for 
mixtures where the individual constituents are physically separate. This approach considers the volume 
fraction occupied by each constituent as an additional kinematic variable. Therefore, in addition to the 
balance equations for mass, linear momentum, angular momentum and energy, usually applied in 
continuum mechanics, an equation which accounts for changes in the volume fraction, called the balance 
of equilibrated force, is included. Balance equations for each constituent as well as for the mixture are 
considered. The immiscible nature of the constituents allows constitutive equations to be developed which 
depend only on those variables which pertain to that constituent. Exchange between the ice and vapor 
is accounted for by interaction terms which enter the theory through the balance equations for the 
constituents. Forms for these interaction terms are used which guarantee that the entropy inequality is 
not violated. 

A one-dimensional analysis of an isothermal homogeneous snow cover suddenly subjected to a colder 
surface temperature reveals a thermodynamically active zone associated with a large temperature gradient, 
initially located near the top surface, but which moves downward with time in a wavelike fashion 
decreasing in intensity. Slight differences in constituent temperatures are calculated during the more active 
transient phase in conjunction with a decrease in snow density. 
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INTRODUCTION 

An improved understanding of snow as a material is of widespread interest, since a large portion 
of the globe is seasonally or permanently covered with it. It is also of broader scientific interest, 
since it exists naturally at atmospheric conditions conducive to phase change, coupled with heat 
flux, mass flux and deformational processes. It is an excellent model medium which may be applied 
to other granular or porous geologic and engineering materials where processes similar to those 
involved in snow metamorphism occur, but only at more extreme temperatures and pressures. The 
analysis presented in this paper is concerned with dry snow, which implies an absence of free water. 

There are a number of general metamorphic processes occurring in a snow cover. Initially fragile 
atmospherically formed ice crystals will settle and deteriorate into a more stable configuration, and 
in the absence of a large temperature gradient will tend toward a rounded shape. Development of 
this rounded form is variously termed equi-temperature (LaChapelle 1969; Sommerfeld 1969) or 
equilibrium growth (Colbeck 1981) metamorphism. 

Due to geothermal heating, temperatures at the snow/ground interface will usually remain near 
0°C throughout the winter. When the snow surface temperature is at or above that of the base, 
melting will occur. If the situation persists free water will eventually bring the snowpack to an 
isothermal condition typical of a liquid saturated snowpack. Frequently, however, the surface 
temperature will be colder than the underlying snow establishing a temperature gradient. Such 
gradients in excess of approx. 10°C/m and dependent on the textural condition of the snow will 
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induce the formation of depth hoar; striated faceted crystals which are poorly bonded together. 
This is termed temperature gradient (LaChapelle 1969; Sommerfeld 1969) or kinetic growth 
(Colbeck 198 I) metamorphism. 

Thermal gradients induce an upward vapor flux from the lower warmer regions toward the upper 
colder regions. Mass flux will proceed by a "hand to hand" mechanism (Yosida and Kojima 1950, 
cited in Akitaya 1974). Ice will sublime from the top of a grain (at the bottom of a pore) and the 
water vapor will be deposited as ice on the bottom of a slightly colder grain above (at the top of 
the pore). 

There obviously are numerous interacting processes and conditions governing snow meta- 
morphism, but in general snow has been studied by examining these processes independently. The 
snow cover is a fine grained granular or porous geologic material with an ice matrix and interstitial 
pores filled with water vapor and air. The development discussed here is an attempt to initiate a 
more unified theory for snow, using a continuum theory of multiphase mixtures. The approach of 
the theory, while in many ways still in a developmental stage is well-suited to this application. 

To begin the discussion on mixtures, consider a continuous body which is composed of a number 
of materials, called constituents, which are all intermixed. Each of the constituents is itself 
considered to be continuous and the total collection of these constituents is termed the mixture. 
Early work dealing with mixture theory was primarily concerned with mixtures of gases. A basic 
assumption in this work is that every constituent of the mixture is considered to be simultaneously 
present in the same differential region of space. Mixtures satisfying this requirement are referred 
to as "miscible mixtures". One result of this assumption is that in order to properly retain the 
generality of the theory, it is expected that any state variables relevant to equations which describe 
the constitution of an individual material (i.e. the constitutive equations), should incorporate these 
same variables into all constitutive equations for all constituents of the mixture. The assumption 
of a mixture composed of constituents which are ideally miscible is the foundation for what is 
considered the Classical Theory of Mixtures. 

It is readily apparent that, while the classical theory is pertinent to a number of applications, 
the requirement that an element of the mixture contain all of the constituents simultaneously is 
quite limiting to its scope of applications. Immediately, any mixture which contains immiscible 
constituents is necessarily excluded from a strict application of the classical theory. Examples of 
such mixtures are fluid and/or vapor flow in porous or granular material, particle suspensions in 
fluid or vapor and bubbly liquids. 

Given the basis on which the theory of mixtures has developed, materials such as those just 
described do not even fit the classical definition of a mixture. However, adaptation to include these 
types of materials in the classification as a mixture have been successfully accomplished. These 
theories are to a large extent still in the theoretical development stage, and applications are as yet 
relatively few. Mixtures of this type are alternatively referred to as immiscible mixtures; mixtures 
with structure or microstructure, the implied structure being defined by the interfaces separating 
constituents; or multiphase mixtures, indicating that discrete phases are involved. In order to 
describe the multiphased material asa  continuous mixture, but also retain the individual integrity 
of the constituents, regions defining a boundary-value problem must be very large relative to the 
size of a grain or pore space. An extremely important simplification results from treating the 
constituents as discrete: the constitutive relations for each constituent are considered independent 
of the other constituents in the mixture. 

In order to address the problem of immiscible mixtures, one method is to include the volume 
fraction of each constituent as an additional kinematic variable. These are called the volume 
fraction theories. Bedford & Drumheller (1983) outline the development for a number of theories 
of this kind. 

Goodman & Cowin (1972) developed a continuum theory for a granular or porous material 
assuming solid grains and vacancies in the interstitial pores. They define an additional kinematical 
variable called the volume distribution function, representing the portion of the material occupied 
by the grains. Since the volume distribution function and the motion are assumed to be 
kinematically independent, they must be governed by an appropriate number of balance equations. 
Each volume distribution function, therefore, requires an additional balance equation to those 
usually applied in continuum mechanics. 
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This concept was introduced for multiphase mixtures by Passman (1977) such that each 
constituent is represented by its volume fraction of the mixture, and the additional balance equation 
is included for each constituent as well as for the mixture. Nunziato & Walsh (1980) extended and 
refined the theory to include chemical reactions. The development presented here treats snow as 
a multiphase mixture including the mass interaction due to the phase change. This is accomplished 
by applying the equivalent theories of Nunziato & Walsh (1980) and Passman et  al. (1984) to that 
specific problem. The approach utilized by them is outlined below. 

KINEMATICS 

Let x~ denote the current X~ and reference position vectors for a particle of the ath constituent 
and the constituent velocity is defined as 

a [z.(Xa, t)] 
'x~  = d t  = v . .  [ 1 ]  

The material density of each constituent, ~ ,  is defined as the mass per unit volume of the material 
and the volume fraction of the ath constituent, v~ represents that part per unit volume of the 
mixture occupied by the constituent, so 0 < v. ~< 1. The partial density of constituent a, p~, is 

Pa = ~al~a, [2] 

where obviously p~ < ~ in the case of a true multiphase mixture, p is the bulk density for the 
mixture, defined by 

p = X po; [31 

Z indicates summation over all of the constituents which comprise the mixture. The mixture 
considered in this paper is assumed to be saturated (i.e. v = 1), 

E va = v = 1, [4] 

SO f = O. The mixture velocity is defined in terms of the constituent velocities as 

pv = E p vo. [51 

The overdot represents a time derivative for the mixture, whereas the backward prime indicates 
time derivatives for the constituent. The diffusion velocity for a constituent, u=, measures velocity 
relative to that of the mixture, 

u,,  = v,, - v .  [61 

In addition to the balance equations for mass, linear momentum, angular momentum and 
energy, usually applied in continuum mechanics, this volume fraction theory for multiphase 
mixtures assumes an equation, called the balance of equilibrated force, to account for changes in 
the volume fraction. Balance equations are given for each constituent and for the mixture. The 
individual balance equation for each constituent is related to the other constituents through 
interaction terms representing an exchange between constituents. The balance equations used in 
this application for a saturated mixture are as follows (Passman et  al. 1984): 

and 

C+ = '#a + Pa div va, mass [7] 

m +e = p~'v~ - div To - p~b~ + c+vo - rc grad v~, linear momentum [8] 

M ~  + = T ~  - T~ r, angular momentum [9] 

v +e = p~'(ka'v~) - div h~ - Polo + c + k~'vo + ~, equilibrated force [10] 

Va " Va 
e~ +* = c :  e,~ 2 

, 2 )  
k z o  + m += • v~ + o+~='v~ + p~'eo - To • Lo 

pa'k~'v~ 
- ho. (V'v~) ~ + V • q a -  p~r~; energy [11] 
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where c + is the mass interaction for the ath constituent, m +e is the extra linear momentum 
interaction, Ta is the partial stress tensor, n is the interface pressure and ba is the external body 
force acting on the constituent. M~ + is the angular momentum interaction of the constituent. This 
form for the angular momentum implies that the partial stress for the constituent is not necessarily 
symmetric, unless M~ = 0. 

Terminology used for the terms appearing in the balance of equilibrated force [10] reflect the 
similarity in form to the linear momentum balance equations [8]. Here, v~ +e represents the extra 
equilibrated force interaction, ka is the equilibrated inertia, ha is the equilibrated stress and la is the 
external equilibrated body force. 

The energy equation [11] is also frequently referred to as the first law of  thermodynamics. Here 
e~ +~ is the extra energy interaction of the ath constituent with the others, qa is the constituent heat 
flux, r a is the external heat supply for the constituent and e~ is the internal energy which represents 
all of  the energy of the constituent exclusive of kinetic. L a is the velocity gradient defined as 
L~ = grad(vo). 

Passman et al. (1984) use the terminology "extra" in the interaction terms for energy, momentum 
and equilibrated force to indicate the saturation constraint. The interactions postulated in the 
theory are considered to be representative of  exchanges only among constituents, and in the 
unsaturated case will all be in balance with each other. In accordance with this, the interaction of  
all constituents sum to zero for the unsaturated condition, but the saturation constraint will alter 
the summation requirement in the case of the extra equilibrated force. 

Summation of  the constituent interactions: 

and 

e~ + = 0, [12] 

m, +e = 0, [13] 

M + = 0, [14] 

Z v~ +e= Nrc + pg [15] 

Y e:°=0, 

where N is the number of  constituents and g is the equilibrated force supply. 

[161 

Properties of  the mixture are defined in terms of  the properties of  the constituents in such a way 
that the conservation principles for the mixture are the same as for a single continuum. Summing 
over all of  the constituent balance equations will lead to the standard forms for the balance 
equations of  the mixture when the following restrictions are imposed (Passman et al. 1984): 

pb = ~ pob., [17] 

T - pw = ~ (T a - pvava), [18] 

Pg = ~ Paga, [19] 

pt = p°to, [20] 

pk~ = ~ pak,'v, ,  [21] 

h - pkOv = ~(h. - paka'vava), [ 2 2 1  

p(e  + [½]v " v + [½]kf~:) = ~. pa(ea + ' , .2 5v,. v, + [5]ka%), [23] 

q - TTv -- hf - p(e  + [½]v. v + kf2)v = ~ qa - T~v, - h,'v a - po(ea + [½]Va " V, + k,'v~)v, [24] 

and 

p ( r  +b" v+lf)=p.(r.+b., v. + l.'v.). [25] 
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The entropy inequality for saturated multiphase mixtures used by Passman et al. (1984) is 

[ ( ) ~, _pa(,~/a+~lo,O~)+Ta.La+ha.grad,va_q/v.(gradOa) o+e Pa va 0 - - - - ~  va 

+ e + e _ m + , . v a _ c +  ~a va'v~ k a 0~>0. 
2 

~'a is the Helmholtz free energy, defined as 

[26] 

Oa - ea - 0aq. .  [27] 

CONSTITUTIVE ASSUMPTIONS AND RESTRICTIONS 

The initial constitutive assumptions chosen are those suggested by Nunziato & Walsh (1980) for 
multiphase mixtures with chemical reactions and diffusion: 

(~a ,  ~/a, Ta, ha, qa) = ~ ( v ~ ,  wa,'v a, Ua, 0a, Fa, ga, ca) ,  [281 

and 

(c +, o~ +, m +, M~ +, e + ) = ~ ( v  T, wT,'v T, uT, OT, FT, gT, cT) [29] 

ka = k~(va), [30] 

where the subscript a, as usual, implies a dependence on that particular constituent, and T indicates 
a dependence on all of the constituents. The gradients of the volume fraction and temperature are 
given as wa = grad va and g, = grad 0a, Fa is the deformation gradient tensor, Fa = VL(X,, t), and 
the quantities ca and c are mass concentration which is used as a measure of the extent of chemical 
reaction. 

Using the above constitutive assumptions [28], substituting into [26] and utilizing the argument 
established by Coleman & Noll (1963), as in Nunziato & Walsh (1980) the following restrictions 
are implied: 

OVa 
7 a  = - -  [ 3 1 1  

= 0, [32] 

and 

= 0, [33] 
du. 

0¢'a 
g,  = 0, [34] 

[351 

d~a [36] ha=p~ c~ w,, " 

These restrictions reduce the allowed dependence of the constitutive variables and provide 
specific forms for constitutive relations for Ta, r/a and ha. 

An equilibrium state is attained when constituent temperatures are equal, constant and uniform, 
the velocities and mass interactions are identically zero, and the mass concentrations, deformation 
gradients and volume fractions are constant. In addition, strong equilibrium, requires that the 
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chemical potentials for all of the constituents be equal (Nunziato & Walsh 1980). In particular at 
strong equilibrium, indicated by a superscript., it may be shown that (Nunziato & Walsh 1980) 

{e~+e} * = 0, [37] 

q* = O, [38] 

m~ +e* = 0 [39] 

and 

( (D +ae) * = - -  Pa OV a }  ' [40]  

This last relation [40] may add some physical interpretation to the equilibrated force interaction. 
It is the negative of the form which Baer et al. (1985) termed the configuration pressure to represent 
the contact forces between grains, and Passman et al. (1984) state that it represents the elastic 
response of the particle assembly to compression. 

ASSUMPTIONS FOR SNOW 

This adaptation of the theory of mixtures considers snow as a porous material of two 
constituents, a solid constituent for the ice phase, and a single vapor constituent to describe the 
air and water vapor which fill the pores. The subscript notation used for the ice and vapor is i and 
v, respectively. Both constituents are considered isotropic. The ice is assumed incompressible in the 
state to be examined, indicating a constant material density for the ice, 7i, but the vapor density, 
~v, can change. 

Complete and proper interpretation of the equilibrated force equations is still developing, with 
much of this interpretation coming from the granular theory of Goodman & Cowin (1972), upon 
which the present theory for mixtures is based. In this development (Nunziato & Walsh 1980) the 
equilibrated stress is related to the variation of the Helmholtz free energy with the volume fraction 
gradient [36]. Nunziato & Cowen [17], dealing with an incompressible matrix in granular material, 
state that h can only be important if the void distribution is grossly nonuniform or if the initial 
void volume is large; and for fluid suspensions, Passman et al. (1984) assert that, ha is not significant 
except for highly concentrated nonhomogeneous suspensions. Based on this foregoing work, the 
equilibrated stress term will be set to zero, 

ha = O. [41] 

Assuming very slow velocities are involved in snow metamorphism and with an incompressible 
matrix material the microstructural inertia effects are assumed to be insignificant and the 
equilibrated inertia is negligible, 

k~ = 0. [42] 

The equilibrated force interaction is in some manner related to the pressure in the void and the 
material properties of the matrix (Nunziato & Walsh 1980). In the case of snow the ice is 
self-supporting with the vapor adding little structural support and since the curvature effects of 
the grains will be considered to some degree by the interface pressure, the equilibrated force supply 
is ignored in the formulation: 

go = 0. [43] 

Assumptions [41] and [42] reduce the balance of extra equilibrated force [10] to 

o :  o = -polo + ~. [44] 

The external equilibrated body force for the mixture, l, is related to an externally controlled body 
force or pore pressure (Jenkins 1975). In the present development the extra equilibrated force gives 
the interface pressure between the constituents which is necessary for the phases to remain in 
contact, minus the term involving the external equilibrated body force. 
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Assuming the Helmholtz free energy, ~b,, is isotropic implies that T. is symmetric, so the angular 
momentum for the constituents are identically zero, 

M + = 0. [45] 

HEAT FLUX AND I N T E R A C T I O N  TERMS 

Written with restrictions [31]-[36], equations [12], [13] and [16], and the fact that the time rate 
of change of the volume fractions are negatives of each other, the inequality may be explicitly 
written for the two constituents in the form 

qi 'gi qv'gv ° +" + Pi V +< + pv 63Vv / _ _  Vi 

o2v o, - ov 

- -  - -  - -  e i  . . . .  m i  
+ o, Ov t t oJ  tOv)J 

< 
[46] 

Forms for the remaining constitutive equations are arrived at by insuring that the second law 
[46] is satisfied. A sufficient, although not a necessary, condition that the inequality is not violated 
is that each of  the individual terms is positive semi-definite. Assuming positive coefficients the heat 
fluxes become 

and 

qi = -qiogi [47] 

qv = --qv0g~, [48] 

so that the heat flux is proportional to the temperature gradient, and the proportionality coefficient, 
q,~, is the thermal conductivity. 

An appropriate equation describing the extra energy interaction is 

e + e -  e + e =  +~ • - -  - -  e i  0 ( 0 v  - -  0 i ) -  [ 4 9 ]  

This form is analogous to Newton's law of cooling, it will govern the rate and direction of  the 
energy interaction, determined by the constituent temperatures, e +" is a positive-valued energy b 
interaction or heat transfer coefficient. 

The extra interaction of linear momentum has the following suitable form to satisfy the 
requirement of  [46]: 

/'It "ttoJ t501 
where mi0 +< is a positive-valued drag coefficient. Mass interaction as implied by the inequality [46] 
is 

) -')} -- +f(#v liii (l'~ (¥i :¥i C+=--C+--Ci°tt~--Oii + \ 2 , ] \  0i if, . [51] 

This form for the mass interaction is determined by chemical potentials, kinetic energy and 
temperature difference effects. 

In addition to satisfying the second law [46], the heat flux [47] and [48], extra energy interaction 
[49], extra momentum interaction [50] and mass interaction [51] all go to zero at strong equilibrium, 
as required. The equilibrated inertia should satisfy 

( (  'I/#i~ / 'Ova) 
K ' v i  ~- __ t; +e d" Pi cOvi j __ Ov +e "1- p., d v v /  , [52] 

Oi O~ 
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where K is some positive value. A satisfactory form for the extra equilibrated force interaction, 
which is also the balance equation for the equilibrated force with assumptions [41] and [42], is for 
the ice, 

oi+e {(~ "~" Pv -~v~vv)0i -- g'vi 0i 0v -- (/9i ~ "[- ~)0v} . 
= , [ 5 3 ]  

{0~ + 0~} + rc 

and for the vapor, 

{0 v "]- 0i} + 

HELMHOLTZ FREE ENERGIES AND ASSOCIATED TERMS 

In the formulation the snow is considered as a fully symmetric material. This isotropy indicates 
that a static density preserving alteration of the reference configuration will not alter the material 
response. The manner in which the assumed constitutive variables enter the formulation should 
satisfy the material symmetry group. Based on restrictions [32]-[34], assuming [41] and following 
the work of Cross (1973) dealing with mixtures of fluids and isotropic solids, suitable functions 
for the chosen constitutive variables are 

where 

(~//a, ~a, T.) =/(v~, 0~, E~, p~), [551 

E~ = (½)(F~rF~ - 1); [56] 

Ei is the Lagrangian strain tensor. 
Constitutive equations may depend on these variables without violating any principles, however 

it does not imply that they must all be included. Dependence on variables which affect one of the 
constituents is not necessarily appropriate to describing all constituents. This is apparent through 
consideration of the principle of phase separation for multiphase mixtures, which takes into 
account the discrete nature of the individual constituents. 

The vapor constituent is not considered to be affected by the deformation gradient and therefore 
the elastic strain Ei of the ice constituent, so this term is not included in the constitutive assumptions 
for the vapor. The ice constituent is taken as incompressible, therefore including both the volume 
fraction and the dispersed density as variables for the ice is redundant. The constitutive variable 
which will be used here is the dispersed density, p~. 

The Helmholtz free energy will determine forms for the entropy [31], partial stress [35] and the 
equilibrated stress [36]. Consequently, proper determination of the Helmholtz function is crucial 
to the entire development. The form for the Helmholtz free energy for both constituents are 
approximated here as second-order Taylor series expansions. The Helmholtz free energy expansion 
for the ice is 

~ = [¢~. (tr E~) + ~Ji2 ( 0  i - O R) "[- ~ i  3 (P i  - -  PiR) + (/) [l~i ' [tr(Ei)]2 + 2~5 tr(E02 

+ 2ff~6(0~- OR) tr(E0 + ~ ( 0 ~ -  0R) 2 + 2~b~8(0~ -- 0R)(pt- P~R) + 2~%(p~- PiR) tr(Ei) 

"Jr I//i,0(Pi- fflR) 2] -'[- I~¢iR; [57] 

and for the vapor, 

~v = ~v,(Vv - VvR) + ~,v2(0~ - OR) + ~'v,(P~ - -  PvR) + ( ½ ) [ ~ , ( V v  --  VvR) 2 

+ 2~k~,(0~ - OR)(V~ -- V~g) + ~bv6(O~ -- OR) 2 + 2~,(0~ -- OR)(p~ -- P~R) 

+ 2~kv~(p~ -- p~R)(Vv - -  VvR ) .q- ~bvo(p ~ -- pvg)2] + ~vR" [58] 

Without loss of generality the reference temperature OR will be taken as the same for both 
constituents. 
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The form for the partial stress of the ice [35] which has been developed, may be reduced through 
application of the chain rule and the fact that the equilibrated stress is not considered significant 
[41], 

3~/i T 

Assuming only small strains are imposed, the deformation gradient is approximated by Fi ~ 1. 
This small strain assumption implies that the Cauchy and the first and second Piola-Kirchhoff 
stresses are equivalent, so there is no difficulty posed in dealing with the Lagrangian strain tensor. 
The stress is then given by 

Ti = Pi k t~Ei j 

= p~{$i,l + ~,  tr(E31 + 25~E~ + $i6(0~- 0R)I + $~9(Pi- PiR)I}. [59] 

Taking the strain to be zero in the reference state leaves 

pil/ / i l l  = TiR 

as the reference stress of the ice. 
Stress of this form [59] is similar to the DuhameI-Neumann law (Sokolnikoff 1956) for a 

thermoelastic material, but the Duhamel-Neumann law does not include the reference stress and 
the term involving the partial density. This comparison offers a means to determine several of the 
coefficients. Letting 2 and G represent the Lam6 constants and ~ the coefficient of linear expansion, 
comparison of [59] with the Duhamel-Neumann law yields 

Pi ~ i  4 = '~, 

Pi ~i5 = G 

and 

~q, = - ~ ( 3 2  + 2 G ) .  

G is also known as the modulus of rigidity or shear modulus. These Lam6 constants are related 
to Young's modulus, Y and Poisson's ratio ¢~, as 

2 =  
[(1 + ~ ) ( 1  - -  2 ~ ) ]  

and 

Y 
G = m  

2(1 + ~)" 

The entropy of the ice, by [31] and [57], is 

~/i = --[$i2 + ~bi, tr(Ei) + $i7(0i- OR) + $i,(Pi- PiR)]. 

This then gives the reference entropy, 

- -  I//i 2 = ~iR" 

At equilibrium, by [40] and [57], the equilibrated force interaction for the ice is given by 

(v +c). = [_  PiYi {@i3 + @~B (0i -  0R) + ~i9 tr(Et) + @h0 (P~- PiR)}]*, 

SO that the reference equilibrated force interaction is 

--PiR~)i~//i3 ~ '  0i~ e. 

This will yield 

- ( 2 n  - ?v ROR) 
~i3 = (PiRTi) ' 

which will be shown when the reference equilibrated force for the vapor is determined. 

[60] 

[611 
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Using [27] the internal energy may be written as 

ei = [~i, (tr Et) - ~ki2 OR + I~i 3 (P i -  PiR )] + (/)[~i4 [tr(E~)]2 + 2~'is tr(Ei)2 

- 2~i,0R tr(E0 -- ~b~7(02 -- 02) - 21~is 0 R ( P i -  PiR) 

+ 2~big(Pi -- PiR) tr(Ei) + ~i~0(Pi -- PiR) 2] + ~biR. 

Following the example of Passman & Batra (1984), 'e~ is given by 

, V / d e  i \ ,  "1 (63eiX~,0i ( O e i ' ~ , p i  
ei = trL~,-~J EiJ + \~30i ] -]- \6~pi,] 

= tr(ei,'Ei) + ei.,'0i + ei/Pi, [62] 

where, as an exception to the usual notation, the lower case boldface e represents a tensor. 
The coefficient associated with the time derivative of the temperature, et2, is related to the specific 

heat of  ice at constant volume. The other coefficients in [62] represent the latent heats as a result 
of  strain and partial density. This will allow some additional insight into the coefficients in the 
Helmholtz equation. The latent heat of  the ice with respect to the strain is given by 

ei t = [I//i, -t- I ] / i , [ t r (Ei ) ]  - -  I//i60 a + I]/ig(P i - -  P i R ) ] l  "1- 2l~isE i . 

The specific heat of  the ice is 

ei2 = - -  I]/i7 0i .  

The latent heat due to a change in dispersed density is 

ei3 = [I//i3 - -  I//is 0 R --b I]/i9 tr(Ei) + ¢ i , 0 ( p  i - PiR)].  

The chemical potential may be written in terms of the Helmholtz free energy (Nunziato & Walsh 
1980) and expressed for the ice using the modified constitutive assumptions by [57] as 

~ (Pi I]/i) 

#i  = ~Pi 

= I//il (tr Ei) + ~ (0~- 0R) + ~bi 3 (2p~- PiR ) "Jr" (1)[i//i4 [tr(Ei )]2 + 21]/i5 tr(E,)2 

+ 21//i,(0i- OR) tr(Ei) + ~,iT(0i- 0R) 2 + 2~bi,(0i- ~ g ) ( 2 p i -  PiR) 

+ 2~i9(2A- P~R) tr(E,) + ~h0(3P~ -- 4p~piR + P~R)] + ~b~R. [63] 

The reference Helmholtz free energy is determined by assuming it to yield a zero chemical 
potential at reference, 

I~¢i 3 PiR = - -  I]/iR" 

The effect of  ffil(tr E) and I//ig(2pi--RiR) tr(Ei) on the chemical potential is unknown, so for 
simplification it is assumed that when the partial density is equal to the reference value, these terms 
will cancel in the chemical potential equation, thus, 

PiR 

The Helmholtz free energy for the vapor is assumed to be an ideal gas as represented by the form, 
for example, in Sears & Salinger (1975), 

~bv=C(Ov- -OR) - -CO~ ln [~-~] -  ROv(ln[~-~R])- tlvR (Or-- OR) + ~b~ o 

( [ '1)  = C(Ov - OR) -- C0,[ln 0v - In OR] -- R0v In 7vR + In ~ --~vR(0v -- OR) + 0,R, [641 
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where C is the specific heat capacity at constant volume and R is the ideal gas constant. The 
coefficients for a Taylor series expansion of  [64] may be written as 

O~v R R0R 
~ " - - ~  -- ~R 

and 

O~k~ R - -  R0R '~,=~p~ p~. 

O2~v R R 
~%=O0~0Vv = V~R 

~ / ~  R 

¢% = OOv ~p~ R - PvR 

9 -- 2 PvR OP~ IR-- 

a¢/~ I 

I _ROR 
VvR 

+v - - c  
' ~o~ IR 

02~0 ~ R=O 

[65] 

- - ( 2 n R *  - -  7 v R 0 s )  
(19i~c) * = 2n* - 7~ROR and ¢% = (P iR~i )  ' 

as stated previously [61]. The vapor entropy by [31] and [58] is 

nv = - [ ~ 2  + ~%(v~ - V~R) + ev, (0v --  0R) + ¢ / . (P~  --  P~R)]. 

MF 15/4----F 

then 

Substitution of  these ,:oefficients into [58] gives 

" '  
\ V,R/ 

1 R0 R +(2)[(~) (vv-vvR)2-(2R~(Ov-OR)(vv-vvR)\vvR,/ 
/ROR'X -- P~R)21 + ~vR. [66] -- ( ~ R )  (0v -- OR)2 "]- (~vRR)(0v -- 0R) (Pv -- PvR) -- ~'~v2R )(Pv 

The objective form for the partial stress in the vapor, by Nunziato & Walsh (1980) and [41], is 

= -:~[~k~, + ~kvT(0~ - OR) + ~b,,(p~ -- Pva)]l. [67] 

In the reference state this yields a stress which is simply the negative partial pressure for an ideal 
gas, 

TvR = -- R0 R pvR 1. [68] 

By [40] and [58], at equilibrium the equilibrated force interaction for the vapor is 

(o~e) * = --pv[~,  + ~kv,(V~ -- V~R) + ~/~5(0, -- OR)]. [69] 

Examination of  this at the reference state, gives the reference extra equilibrated force interaction, 

(19 +Re) * = 7v ROR, 

which is the pressure for an ideal gas. 
A slight retrogression at this point is helpful in ascertaining an appropriate value for the reference 

equilibrated force of the ice. With assumption [43], by [19], [15] reduces to 

~19+¢= N~, 



564 E, E. ADAMS and R. L. BROWN 

So, using [27], the internal energy may be written as 

ev = ~v,  (vv - v v . )  - ~ v 2 0 .  + ~v~(pv  - p v . )  + (½) [~v . (Vv  - VvR) 2 - -  2~v~0R(V~ - -  V~R) 

- @vr(02v - 0~,) - 20~70R(p~ --  P~R) + ~'~9(P~ - -  P~R) 2] + @,R" [70] 

Using a development  similar to that for  the ice [62], the time rate of  change for  the internal energy 
o f  the vapor  is 

ev = e~, v + ev2 0~ + ev 3 p~. [71] 

The latent heat due to a change in the volume fraction is, 

c~e~ 
e~, = dv---~ = ~k~,(vv - vva). 

The specific heat of  the vapor  in [71] is given by 

e~2 = dO--~ = 

At the reference state this yields the specific heat,  as it should, ev2 = C. The latent heat with respect 
to the partial density o f  the vapor  in [71] is 

J 
¢3ev 

e~3 = (~p~ = q"~3 - ~'~70R + ~'~9(Pv - P~R). 

The chemical potential  o f  the vapor  using the final constitutive variables is 

,,~ ~ ( p ~ v )  

/~ = c~p~ 

= ~b~(vv - V~R ) + @v2(0~ -- 0R) + ~v~(2p~ -- P~R) + (~)[~bv4(V~ -- V~R) 2 

+ 2~k~ , (0 , -  OR)(v~ - V~R) + d/v,(O~ --  OR) 2 + 2~b~(0~ --  eR)(2p~ --  P~R) 

+ 2~b~,(2pv - PvR)(V~ -- VvR ) + ~bvg(3p 2 -- 4pvP~R + p2R)] + ~bvR. [72] 

AS for the ice, the reference Helmhol tz  free energy is determined in this development  by assuming 
it is valued such that  it will yield a zero chemical potential  at reference. This requires the reference 
Helmhol tz  free energy to be 

~R = - @~P~R. 

For  equilibrium, the temperatures  of  the two consti tuents are the same, 0v = 0~ = 0, and the 
chemical potentials must  be equal, so 

[@h (tr E,) + @~2(0 - OR) + @i,(2p~- PiR)] + (½)[@~,[tr(E0] 2 + 2@~, tr(E~) 2 

+ 2~i,(0 - 0R) tr(Ei) + @i7(0 - 0R) 2 + 2~bi,(0 -- 0R)(2pi -- PiR) + 2~big(2pi -- piR)tr(Ei) 

+ ~bi~0(3P~ -- 4piPi R + p2R)] + ~kiR 

= ~,~,(v~ - VvR) + ~k~:(0 - -  0R)  + @~,(2p~ - -  P~R) + (½)[@~,(V~ - -  V~R) 2 + 2@~,(0 - -  OR)(V~ - -  V~R) 

+ ¢'v,(0 --  OR) 2 + 2@v,(0 --  0R)(2pv --  P~R) + 2~'~. (2p~ - -  p~R)(V~ --  V~R) 

2 + ,~',,.,(3pv --  4pvP,,R + P~R)] + ~,,R. 

At this point, I//i8 and ~il0 are still undefined. The necessity of  equivalence o f  the chemical 
potentials at equilibrium suggests a means to ascertain possible values for  these terms. The  terms 
are examined in the reference state for all variables except the temperature,  since this should be 
the dominant  term indicating the difference in chemical potential.  This is an artificial means to 
determine the values, but, the reference condit ions in the solution will be chosen as the initial values 
for the variables, so that,  except for  the temperature  these values will not  stray very far f rom the 
reference values for the time durat ion and condit ions to be considered. First, ~bi,0, is arbitrarily set 
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to zero since an appropriate value for it is not known, and ~bi,0(3P~--4piPiR+P~R) will not 
contribute appreciably as long as the partial density of the ice does not vary far from the reference. 
A value for ~'~8 is determined by equating coefficients of similar variables. Although this forces a 
dependence of the ice coefficient on the vapor constituent, choosing the value at the reference state 
fixes it as constant, and it is assumed that the resulting value would be the appropriate one for 
this ice coefficient, independent of the vapor. 

Examining everything in the reference state except temperature and collecting the remaining 
temperature related terms from the chemical potential [63] and [72] at equilibrium, 

(~/i2 -1- I~¢isPiR)(0 - -  OR) "3!- ~ i7 (0  - -  0R)  2 = (~v2 JI- I~/v7PvR)(0 - -  OR) "Jr- ~v6(0  - -  0R)  2, 

so that by equating coefficients, ~b~8 can be determined in terms of known quantities, 

PiR 

but another implication is that 

I~i 7 ~--- I~v 6. 

This last result requires that the terms related to specific heat for the ice and vapor must be equal 
in order to satisfy the requirement that the chemical potentials are equivalent at equilibrium, which 
is appropriate for ice and water vapor. 

All of these specific constitutive equations which have been developed, with the exception of 
the extra momentum interaction, are material frame indifferent. It is argued here that the 
nonobjectivity of the constitutive form for the extra momentum interaction is not inappropriate, 
since it enters the theory through a fundamental law of dynamics, the equation of motion (balance 
of linear momentum equation), which itself is not material frame indifferent. However, as a side 
point, if the temperatures are equal, the velocity difference term which results, is objective. 

ONE-DIMENSIONAL SOLUTION 

The value of the interface pressure, n, the pressure necessary in a saturated mixture for the phases 
to remain in contact, is assumed to be approximated by the vapor pressure over a surface at 
equilibrium. The equilibrium vapor pressure over an ice grain will vary with temperature, 0, and 
the mean radius of curvature, co (Colbeck 1980). The well-known Clausius-Clapeyron and Kelvin 
equations are used in a combined form to give the equilibrium vapor pressure over a grain in terms 
of the desired variables (Adams & Brown 1982, 1983; Gubler 1985). Assuming the fixed reference 
temperature is the same as the reference temperature to be used in the Clausius-Clapeyron 
equation, the two equations may be combined: 

o, 0,1 
where P is the equilibrium vapor pressure over the surface, L is the latent heat of sublimation and 
a is the interfacial energy. 

The leading coefficient involved in the mass interaction equation, ci0*, is assumed to be 
proportional to P as well, since metamorphic processes are influenced by these same variables. 
Although the solution presented assumes uniform spheres, the inclusion of this type of dependence 
into the interaction terms indicates a means by which to incorporate microstructure. The magnitude 
of the proportionality, table 1, is assumed to be small since the density change in snow as a result 
of metamorphism in dry snow is very slight. The coefficient for the energy interaction or heat 
exchange is also arbitrarily assumed, table 1. 

Young's modulus is approximated by fitting to a curve in MeUor's (1974) "Review of basic snow 
mechanics". The equation used in the calculations presented here (in pascals) to approximate the 
curve for a density range of approx. 150-375 kg/m 3, is 

Y = 10 exp(10vi + 4). 
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Table 1. Coefficient values used in the analysis 

Ice density ?~ 
Water vapor density 7, 

Air density 
Gas constant R 
Poisson's ratio (snow) ¢, 
Thermal expansion coefficient of ice ~t 
Specific ~a t  of ice and vapor C 
Thermal {onductivity of ice qi0 
Thermal ~onductivity (air) q~o 
Acceleration of gravity b 
Interface ~nergy a 
Latent heat of sublimation L 
Reference temperature 0R 
Vapor entropy (reference) r/~ R 
Ice entropy (reference) ~]iR 
Reference pressure (vapor) P~ 
Mass interaction coefficient (proportionality part) 
Momentum interaction coefficient (constant part) A 
Equilibrated force interaction coefficient K 
Energy interaction coefficient ei0 +~ 

917 k g / m  3 
4 .847 x 10 -3 k g / m  3 
1.3 k g / m  3 
462 J / ( k g .  deg) 
0.2 
5 x 10 -5 deg 
2093 J / ( k g  • deg) 
2.2 J / (m  • s .  deg) 
0.02 J / ( m .  s .  deg) 
- 9 . 8 1  m/s  2 
0 .109 J / m  2 
2.838 x 106 J / k g  
273 K 
9157 J / (kg  • deg) 
2303 J / (kg  • deg) 
610 N / m  2 
1 x 10-12/(s3 • deg ' m 4) 
I x 10 t3 k g / ( m  3 • s) 

1 x 10 -6 k g / ( s ,  m ' deg) 
10 J / ( m  2 . s '  deg) 

Application of the theory which has been developed for snow, is carried out in one dimension. 
This one-dimensional approach is applied in the vertical, slope normal direction, simulating a 
snowpack on a horizontal field. A one-dimensional model is obviously limiting to the scope of 
problems, as well as being inadequate to properly describe some processes. However, this is the 
logical first step toward implementing the theory to this physical problem. 

In this application the velocity of the ice is assumed negligible, since the settlement velocity due 
to gravity would be very slow. Also, given the granular nature of the material, settlement involves 
a closer packing of grains as they move laterally and downward into voids, an effect which is not 
applicable in a one-dimensional model. 

The vapor is considered as a single constituent in the formulation presented, but is tailored in 
the solution to account for only the diffusion of water vapor through the air, assuming that the 
air is stationary. 

Passman & McTigue (1984) dealing with saturated porous media assume an equation similar to 
[50] (but without temperature effects) and suggest a coefficient to remain compatible with Darcy's 
law. This has the form v~/x, where ~ is the fluid viscosity and x is the permeability. To remain 
dimensionally consistent with this but using [50], temperature must be included as well. In the 
context of the present application the drag on the vapor will be influenced by both drag due to 
air and that due to the ice matrix. To compensate for this the viscosity-permeability ratio is 
replaced by a larger (although at this point somewhat arbitrary) constant drag, A. The drag used 
in this two-constituent application to snow is 
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Figure l. Temperature of the ice relative to position in the idealized snowpack. 
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In the numerical solution to the problem, derivatives are put in a finite difference form. The 
derivatives on space are in general central differenced, except at the bottom and top nodes where 
they are appropriately forward and backward differenced. The derivatives on time are forward 
differenced. 

The basic approach to the explicit numerical solution used, is quite straightforward. Values for 
variables which do not involve time derivatives are calculated at the initial or current time for each 
time interval iteration or program loop. The balance equations are then used to find the rate of 
change of those variables which explicitly vary with time as indicated by the equations. For each 
iteration or loop, variables are recalculated to reflect what the value is at the end of the period 
which is used to step forward in time. These updated values are then assumed as the variables which 
are used in the balance equations for the next loop. This iterative process is progressively stepped 
forward in time. 

Proceeding as above, the manner in which the balance equations are utilized should be noted. 
Considering the ice as incompressible allows the time rate of change for the volume fraction of 
the ice (-vapor) to be calculated directly through the equation of mass balance for the ice [11], and 
the time rate of change of the partial density of the vapor is determined by the mass balance for 
the vapor [11]. 

The vapor velocity is calculated using the linear momentum balance for the vapor [12]. Since 
the ice velocity is assumed always zero, the linear momentum balance equation for the ice [12] may 
be used to calculate the partial stress of the ice constituent. Then, since a form for the partial ice 
stress is also given through the derivative of the Helmholtz free energy [59], the strain of the ice 
is determined using this calculated strain in conjunction with the strain from the previous iteration, 
an approximation to the strain rate is found, which is used in the energy balance equation [15]. 

The equilibrated force interaction for the ice and vapor is given by the balance equations for 
the equilibrated force [53] and [54]. It is important to note that the time rate of change of the volume 
fraction is calculated prior, since it is necessary to solve the balance of equilibrated force equations. 
Time rate of change of temperature for the ice and vapor is calculated through the constituent 
energy balance equations [15], prior to which the mass balance equations and the momentum 
balance for the ice must be solved, since the time rate of change of these variables are needed. 

RESULTS FROM THE ANALYSIS 

As a simple example using the application, calculations are made for 1 m of ideal homogeneous 
snow assumed to have an ice volume fraction of 0.3, which is equivalent to snow with a density 
of approx. 276 kg/m 3. Initially the snow cover is assumed at 0°C, with the exception of a -20°C 
surface temperature (calculations are in Kelvin). Snow boundary temperatures for both the ice and 
the vapor are then held constant and equal. 

Transient variation of temperature is seen to react quite reasonably. Figure 1 represents the 
variation of vapor temperature and although there is a very slight difference in constituent 
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Figure 2. Temperature gradient of  the ice relative to position in the snowpack. 



568 E.E. ADAMS and R. L. BROWN 

temperatures, as discussed below, the temperature related figures shown are representative of both 
constituents since the curves are similar. At the end of a very short time period, most of the snow 
remains at the initial temperature with a very large variation in the uppermost region. Passing of 
time shows the temperature profile with respect to position to be migrating toward a linear 
function. Corresponding to temperature is the temperature gradient variation (figure 2). This 
negative thermal gradient in the early stages is of greater magnitude near the surface, decreasing 
with depth, then with the passage of time gradually moves toward a constant value throughout 
(figure 2). 

When the surface of the snowpack is suddenly cooled as in the present situation, the underlying 
snowpack temperature will be lowered also. But, the mixture is composed of two distinct materials 
with differing thermal conductivities, these constituents should not be expected to change 
temperature at the same rate. Although no known physical data exist for snow in regard to 
differences in temperature between the ice and vapor phases, the model is predicting a very plausible 
trend (figure 3). Notice in the figure that it is early in the developing situation and in the upper, 
more active region where the most substantial difference in constituent temperatures is occurring. 

Ice has a much higher thermal conductivity than does the vapor (air) and consequently will react 
to the imposed boundary temperature more quickly. This is the reason the vapor is at a warmer 
temperature than the ice, and the temperature difference between the phases is most pronounced 
when the temperature gradient is the largest. As a result of the boundary temperatures being held 
constant and equal for both constituents, it may be readily seen that, as the processes move toward 
a steady-state situation on the constituent temperatures tend to equilibrate. In addition to 
conductivity, temperatures are also affected in the formulation by other processes such as heat 
transfer in conjunction with the diffusion of water vapor, interaction among constituents 
(particularly energy) and the latent heats. The change in temperature for the vapor must account 
for all of the vapor in the pore, so the mass of air is used for the volumetric specific heat, Pv C, 
when numerically solving for the time rate of change of temperature. 

The partial stress in the ice, the constituent which governs the structural integrity of the snow, 
is dominated by overburden thus increasing linearly with depth. The thermoelastic strain of the 
ice (figure 4) is shown from the isothermal section of the figure to increase slightly in magnitude 
with depth, as expected for a purely mechanical situation. Strain resulting from simply the 
overburden of the snow cover itself however, is not as large as that imposed through thermal 
contraction, for the temperatures, depth and snow density considered here. Strain then, in 
accordance with the variation in temperature for the steady-state situation, is a maximum in the 
coldest region at the surface. 

It is during the early transitional period when the largest water vapor velocities are attained, as 
expected, in the very active upper region of the snowpack, with no effect being felt in the lower 
regions at this stage (figure 5). Subsequent transient vapor velocity profiles show a velocity 
becoming established, progressively deeper in the pack. Eventually, as the steady state is 
approached, the velocity moves toward a constant value. 
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The influence of the transient pattern which has been established among all of the interconnected 
processes, is apparent also in the values calculated here for time rate of change of the volume 
fraction of the ice (figure 6). For a short time after the initial conditions have been imposed, there 
is a relatively rapid loss of ice volume in the very thermodynamically active region located in the 
upper transitional zone of the snowpack. This relatively rapid volume loss is then substantially 
lowered with the advance of time, as the gradient terms and temperature difference between 
constituents are reduced. An active zone for ice volume loss, indicated by a bulge in the curve, 
migrates down through the snowpack with time, but at a greatly reduced magnitude. Finally, as 
the steady state is approached the region of maximum ice volume loss is located at the bottom of 
the snowpack, but is much lower than for the extreme temperature gradient so it is not readily 
apparent in the figure. 

Kinetic growth or temperature gradient metamorphism is known to be most apparent in 
conjunction with large temperature gradients and warmer temperatures. Actual change in density 
associated with large temperature gradients are very slight and have only recently been measured 
(Dexter 1987). 

DISCUSSION 

Equations used in the application have been developed using a modern theory of multiphase 
mixtures, but a number of these newly established equations and coefficients are not yet 
well-understood. Even the most straightforward coefficients, when applied to a mixture, may be 
less transparent than for a single constituent. For example, the coefficient relating to heat flux, the 
thermal conductivity, requires closer examination. Independent thermal conductivity coefficients 
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for the ice and the vapor are used in the application. This causes temperature differences to be 
calculated between the ice and vapor during transient temperature States. As a result of the volume 
fraction concept, the thermal conductivity of the snow mixture varies with the snow density, which 
is in keeping with the concept that density is most commonly considered to be the predominant 
variable affecting thermal conduction in a snowpack (Mellor 1964). Future work however, should 
consider the manner in which temperature, grain bonding and configuration affect the constituent 
thermal conductivity coefficients. 

The coefficient used for the energy interaction, which effects constituent temperature differences, 
is based on Newton's law for cooling, and might be refined in future applications. The K coefficient 
involved in the extra equilibrated force term is not known or well-understood, and consequently 
it was arbitrarily chosen to be small. The mass interaction coefficient which is used in this paper 
is assumed to be proportional to the interface pressure, since this term varies with temperature and 
grain configuration. The proportionality used is assumed to be very small, in order to maintain 
a mass exchange between constituents which is plausible. Snow density change due to metamorphic 
processes alone are so small that they have only recently been physically measured (Dexter 1987). 
Future investigation should appropriately work toward a more complete understanding of this 
coefficient. 

Central to the theory is the manner in which the Helmholtz free energy directly and 
naturally defines the stresses, entropy and equilibrated stress, based on the general theoretical 
requirements. The Helmholtz energies are approximated by Taylor's expansion. The ideal gas 
law is assumed to apply to the vapor free energy and is used to ascertain values for the 
coefficients of the series. A number of coefficients for the ice are arrived at by similarity to 
established forms. For example, similarity of the form arrived at for the stress with a thermo- 
elastic material was utilized. Other coefficients for the free energy of the ice were calculated by 
equating suitable values, to arrive at a balance with the chemical potential for the vapor at 
equilibrium. This method of determining coefficients, i.e. by comparison with processes involved 
for a separate constituent, offers a method to calculate values at certain conditions. The results, 
seem to indicate that these values may also be appropriate at states other than those for which 
the coefficients were chosen to satisfy, but these would ideally be chosen by more independent 
methods. 

Finally, the vapor, which is considered as a single constituent might be successfully subdivided 
into air and water vapor as two distinct constituents. (A very limited attempt at this was made 
in the calculation the water vapor velocity.) This obviously implies a three-constituent mixture, 
which is necessarily more complicated. A three-constituent model would have the advantage of 
distinguishing between the water vapor which is changing phase, and the essentially inert but 
mechanically important air constituent. As a word of caution on this; since the vapors are not 
physically separate it may not be suitable to apply the immiscible assumption to these two 
constituents. 
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Figure 6. Time rate of change of the volume fraction of the ice relative to position. 



SNOW AS A CONTINUOUS MULTIPHASE MIXTURE 571 

CONCLUSIONS 

Application of the multiphase mixture theory to snow is the result of a straightforward approach 
following guidelines set down in previous theoretical work, but which has had little application, 
as yet. Strict adherence to the basic principles of continuum mechanics with assurance that 
requisite requirements or restrictions are not violated, led to a model which is specific to snow. 
Although considerable manipulation and specialized formulation is required, it is carried out within 
the established framework of the theory. The strength of this formulation is its completeness and 
the fact that it does not isolate individual processes, but requires that interrelationships be 
accounted for. 

The fact that interaction terms, which intuitively seem appropriate, are generated through the 
dissipation inequality within the framework of the theory is appealing, since it serves to sustain 
the coherent nature of the approach. Consideration of the snow as a continuous mixture, in this 
presentation, does not explicitly indicate the type of crystal development, except by correlation with 
empirically known growth conditions. It is probable, however, that interaction terms more heavily 
dependent on microstructure can be developed to account for crystal habit, sources and sinks on 
the scale of the grains, as well as other processes. A description of this type is not possible if snow 
is considered as a single continuum. 

The description of snow, or any material, as a mixture consisting of two constituents allows for 
considerable simplification over a mixture requiring additional constituents. This is particularly 
evident in reference to the constituent interaction terms. These interaction terms are equal but of 
opposite sign, when only two constituents are considered. Consequently, when a form for one term 
is established, the other is immediately known. 

Consideration of physically separated phases as autonomous but interacting materials, is 
important when making the transition from theory to application. Independent consideration of 
the individual constituents does not produce equations which are so unwieldy as to be impractical. 
The demonstration that this immiscible mixture concept may yield plausible results for physical 
situations such as the one examined in this paper, adds credence to the approach. 

The theory of multiphase mixtures offers a unified, coherent, comprehensive approach to 
analyzing the myriad of intricately interrelated processes involved in thermodynamically active 
granular or porous materials. Results from the initial attempt presented here to model the snow 
cover by application of the theory, are quite promising and offer useful new insight into snow 
metamorphism as far as predicting trends, although accurate magnitudes of calculated results will 
only become possible as more precise coefficient values and theoretical refinement are achieved. Of 
course, considerable future work remains in the development of this application, but the results 
demonstrate that this relatively new theoretical approach may be successfully used for modeling 
processes as complex as the one presented, The thrust of this paper is concerned with an enhanced 
understanding of snow as a material, but, the most significant aspect is quite probably the 
demonstrated usefulness of this potentially powerful theory, which has had relatively few 
applications, to a broad range of problems. 
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